Part Number Hot Search : 
BCR3KM SSM3J FAN1084T LRS1805A 34C86 S8430 3242AG 220M8D5T
Product Description
Full Text Search
 

To Download NBSG86ABAHTBG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2008 september, 2008 ? rev. 15 1 publication order number: nbsg86a/d nbsg86a 2.5v/3.3v?sige differential smart gate with output level select the nbsg86a is a multi ? function differential logic gate which can be configured as an and/nand, or/nor, xor/xnor, or 2:1 mux. this device is part of the gigacomm ? family of high performance silicon germanium products. the device is housed in a low profile 4x4 mm, 16 ? pin, flip ? chip bga or a 3x3 mm 16 pin qfn package. differential inputs incorporate internal 50  termination resistors and accept necl (negative ecl), pecl (positive ecl), lvcmos/lvttl, cml, or lvds. the output level select (ols) input is used to program the peak ? to ? peak output amplitude between 0 and 800 mv in five discrete steps. the nbsg86a employs input default circuitry so that under open input conditions (d x , d x , vtd x , vtd x, vtsel) the outputs of the device will remain stable. features ? maximum input clock frequency > 8 ghz typical ? maximum input data rate > 8 gb/s typical ? 165 ps typical propagation delay ? 40 ps typical rise and fall times ? selectable swing pecl output with operating range: v cc = 2.375 v to 3.465 v with v ee = 0 v ? selectable swing necl output with necl inputs with operating range: v cc = 0 v with v ee = ? 2.375 v to ? 3.465 v ? selectable output level (0 v, 200 mv, 400 mv, 600 mv, or 800 mv peak ? to ? peak output) ? 50  internal input termination resistors ? pb ? free packages are available fcbga ? 16 ba suffix case 489 marking diagrams* sg 86a alyw   http://onsemi.com a = assembly location l = wafer lot y = year w = work week  = pb ? free package (note: microdot may be in either location) *for additional marking information, refer to application note and8002/d. qfn ? 16 mn suffix case 485g 16 sg 86a alyw   1 ?? ?? 1 see detailed ordering and shipping information in the package dimensions section on p age 12 of this data sheet. ordering information
nbsg86a http://onsemi.com 2 vtd1 sel sel ols vtd0 d0 vtsel d1 d1 vtd1 v cc v ee d0 vtd0 q q a b c d 1234 figure 1. bga ? 16 pinout (top view) vtd1 d1 d1 vtd1 vtd0 d0 d0 vtd0 v ee q q v cc ols sel sel vtsel 5678 16 15 14 13 12 11 10 9 1 2 3 4 nbsg86a exposed pad (ep) figure 2. qfn ? 16 pinout (top view) table 1. pin description pin name i/o description bga qfn c2 1 ols (note 3) input input pin for the output level select (ols). see table 2. c1 2 sel ecl, cml, lvcmos, lvds, lvttl input inverted differential select logic input. b1 3 sel ecl, cml, lvcmos, lvds, lvttl input noninverted differential select logic input. b2 4 vtsel ? common internal 50  termination pin for sel/sel . see table 7. (note 1) a1 5 vtd1 ? internal 50  termination pin. see table 7. (note 1) a2 6 d1 ecl, cml, lvcmos, lvds, lvttl input noninverted differential input 1. internal 75 k  to v ee . a3 7 d1 ecl, cml, lvcmos, lvds, lvttl input inverted differential input 1. internal 75 k  to v ee and 36.5 k  to v cc . a4 8 vtd1 ? internal 50  termination pin. see table 7. (note 1) b3 9 v cc ? positive supply voltage (note 2) b4 10 q rsecl output noninverted differential output. typically terminated with 50  resistor to v tt = v cc ? 2 v. c4 11 q rsecl output inverted differential output. typically terminated with 50  resistor to v tt = v cc ? 2 v c3 12 v ee ? negative supply voltage (note 2) d4 13 vtd0 ? internal 50  termination pin. see table 7. (note 1) d3 14 d0 ecl, cml, lvcmos, lvds, lvttl input inverted differential input 0. internal 75 k  to v ee and 36.5 k  to v cc . d2 15 d0 ecl, cml, lvcmos, lvds, lvttl input noninverted differential input 0. internal 75 k  to v ee . d1 16 vtd0 ? internal 50  termination pin. see table 7. (note 1) n/a ? ep ? the exposed pad (ep) and the qfn ? 16 package bottom is thermally connected to the die for improved heat transfer out of package. the exposed pad must be attached to a heat ? sinking conduit. the pad is not electrically connected to the die but may be electrically and thermally connected to v ee on the pc board. 1. in the differential configuration when the input termination pins (vtdx, vtdx , vtsel) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self ? oscillation. 2. all v cc and v ee pins must be externally connected to power supply to guarantee proper operation. 3. when an output level of 400 mv is desired and v cc ? v ee > 3.0 v, 2 k  resistor should be connected from ols pin to v ee .
nbsg86a http://onsemi.com 3 table 2. output level select ols ols q/q vpp ols sensitivity v cc 800 mv ols ? 75 mv v cc ? 0.4 v 200 mv ols  150 mv v cc ? 0.8 v 600 mv ols  100 mv v cc ? 1.2 v 0 ols  75 mv v ee (note 4) 400 mv ols  100 mv float 600 mv n/a 4. when an output level of 400 mv is desired and v cc ? v ee > 3.0 v, 2.0 k  resistor should be connected from ols to v ee . figure 3. logic diagram d0 q sel vtd0 q sel vtd0 50  50  d0 d1 vtd1 vtd1 50  50  d1 50  50  vtsel r 1 r 2 r 1 r 1 r 2 r 1 q sel vtd0 q sel vtd0 50  50  vtd1 vtd1 50  50  50  50  vtsel figure 4. configuration for and/nand function v cc vt or v bb  d0 d0 d1 d1 v ee v cc table 3. and/nand truth table (note 5)  *  d0 d1 sel q 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 5. d0 , d1 , sel are inverse of d0, d1, sel unless specified other- wise.
nbsg86a http://onsemi.com 4 figure 5. configuration for or/nor function table 4. or/nor truth table** 0 0 1 1 d0 1 1 1 1 d1  0 1 0 1 sel or  0 1 1 1 q q sel vtd0 q sel vtd0 50  50  vtd1 vtd1 50  50  50  50  vtsel v cc vt or v bb  d0 d0 d1 d1 ** d0 , d1 , sel are inverse of d0, d1 , sel unless specified otherwise. q sel vtd0 q sel vtd0 50  50  vtd1 vtd1 50  50  50  50  vtsel  d0 d0 d1 d1 figure 6. configuration for xor/xnor function 1 0 0 d1 0 1 0 1 sel xor  0 1 1 0 q table 5. xor/xnor truth table** 0 0 1 1 d0 1  ** d0 , d1 , sel are inverse of d0, d1, sel unless specified oth- erwise. d0 q sel vtd0 q sel vtd0 50  50  d0 d1 vtd1 vtd1 50  50  d1 50  50  vtsel figure 7. configuration for 2:1 mux function d1 d0 q table 6. 2:1 mux truth table** 1 0 sel ** d0 , d1 , sel are inverse of d0, d1, sel unless specified otherwise.
nbsg86a http://onsemi.com 5 table 7. interfacing options interfacing options connections cml connect vtd0, vtd1, vtsel and vtd0 , vtd1 to v cc lvds connect vtd0, vtd1, vtd0 and vtd1 together. leave vtsel open. ac ? coupled bias vtd0, vtd1, vtsel and vtd0 , vtd1 inputs within (vihcmr) common mode range rsecl, pecl, necl standard ecl termination techniques lvttl, lvcmos an external voltage should be applied to the unused complementary differential input. nominal voltage 1.5 v for lvttl and v cc /2 for lvcmos inputs. table 8. attributes characteristics value internal input pulldown resistors (r 1 ) 75 k  internal input pullup resistor (r 2 ) 37.5 k  esd protection human body model machine model charged device model > 1 kv > 50 v > 4 kv moisture sensitivity (note 6) pb pkg pb ? free pkg fcbga ? 16 qfn ? 16 level 3 level 1 level 3 level 1 flammability rating oxygen index: 28 to 34 ul 94 v ? 0 @ 0.125 in transistor count 364 meets or exceeds jedec spec eia/jesd78 ic latchup test 6. for additional information, see application note and8003/d. table 9. maximum ratings (note 7) symbol parameter condition 1 condition 2 rating unit v cc positive power supply v ee = 0 v 3.6 v v ee negative power supply v cc = 0 v ? 3.6 v v i positive input negative input v ee = 0 v v cc = 0 v v i  v cc v i  v ee 3.6 ? 3.6 v v v inpp differential input voltage |d n ? d n | v cc ? v ee  2.8 v v cc ? v ee < 2.8 v 2.8 |v cc ? v ee | v v i in input current through r t (50  resistor) static surge 45 80 ma ma i out output current continuous surge 25 50 ma ma t a operating temperature range fcbga ? 16 qfn ? 16 ? 40 to +70 ? 40 to +85 c c t stg storage temperature range ? 65 to +150 c  ja thermal resistance (junction ? to ? ambient) (note 8) 0 lfpm 500 lfpm 0 lfpm 500 lfpm fcbga ? 16 fcbga ? 16 qfn ? 16 qfn ? 16 108 86 41.6 35.2 c/w c/w c/w c/w  jc thermal resistance (junction ? to ? case) 2s2p (note 8) 2s2p (note 9) fcbga ? 16 qfn ? 16 5.0 4.0 c/w c/w t sol wave solder pb (bga) pb ? free < 15 sec < 3 sec @ 260 c 225 265 c stresses exceeding maximum ratings may damage the device. maximum ratings are stress ratings only. functional operation above t he recommended operating conditions is not implied. extended exposure to stresses above the recommended operating conditions may af fect device reliability. 7. maximum ratings are those values beyond which device damage may occur. 8. jedec standard multilayer board ? 2s2p (2 signal, 2 power). 9. jedec standard multilayer board ? 2s2p (2 signal, 2 power) with 8 filled thermal vias under exposed pad.
nbsg86a http://onsemi.com 6 table 10. dc characteristics, input with pecl output v cc = 2.5 v; v ee = 0 v (note 10) symbol characteristic ? 40 c 25 c 70 c(bga)/85 c(qfn)** unit min typ max min typ max min typ max i ee negative power supply current 23 30 39 23 30 39 23 30 39 ma v oh output high voltage (note 11) 1460 1510 1560 1490 1540 1590 1515 1565 1615 mv v ol output low voltage (note 11) (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols = float) (ols = v cc ? 1.2 v) (ols = v ee ) 555 1235 775 1455 1005 705 1295 895 1505 1095 855 1385 1015 1585 1215 595 1270 810 1490 1040 745 1330 930 1540 1130 895 1420 1050 1620 1250 625 1295 840 1510 1065 775 1355 960 1560 1155 925 1445 1080 1640 1275 mv v outpp output voltage amplitude (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols = float) (ols = v cc ? 1.2 v) (ols = v ee ) 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 mv v ih input high voltage (single ? ended) (note 13) d, d v ee + 1275 v cc ? 1000* v cc v ee + 1275 v cc ? 1000* v cc v ee + 1275 v cc ? 1000* v cc mv v il input low voltage (single ? ended) (note 14) d, d v ee v cc ? 1400* v ih ? 150 v ee v cc ? 1400* v ih ? 150 v ee v cc ? 1400* v ih ? 150 mv v ihcmr input high voltage common mode range (differential configuration) (note 12) 1.2 2.5 1.2 2.5 1.2 2.5 v r tin internal input termination resistor 45 50 55 45 50 55 45 50 55  i ih input high current (@v ih ) d, d sel 30 5 100 50 30 5 100 50 30 5 100 50  a i il input low current (@v il ) d, d sel 20 5 100 50 20 5 100 50 20 5 100 50  a note: gigacomm circuits are designed to meet the dc specifications shown in the above table after thermal equilibrium has been established. the circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintaine d. 10. input and output parameters vary 1:1 with v cc . v ee can vary +0.125 v to ? 0.965 v. 11. all loading with 50  to v cc ? 2.0 v. 12. v ihcmr min varies 1:1 with v ee , v ihcmr max varies 1:1 with v cc . the v ihcmr range is referenced to the most positive side of the dif ferential input signal. 13. v ih cannot exceed v cc . 14. v il always  v ee . *typicals used for testing purposes. **the device packaged in fcbga ? 16 have maximum ambient temperature specification of 70 c and devices packaged in qfn ? 16 have maximum ambient temperature specification of 85 c.
nbsg86a http://onsemi.com 7 table 11. dc characteristics, input with pecl output v cc = 3.3 v; v ee = 0 v (note 15) symbol characteristic ? 40 c 25 c 70 c(bga)/85 c(qfn)*** unit min typ max min typ max min typ max i ee negative power supply current 23 30 39 23 30 39 23 30 39 ma v oh output high voltage (note 16) 2260 2310 2360 2290 2340 2390 2315 2365 2415 mv v ol output low voltage (note 16) (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols = float) (ols = v cc ? 1.2 v) **(ols = v ee ) 1320 2030 1550 2260 1785 1470 2090 1670 2310 1875 1620 2180 1790 2390 1995 1360 2065 1585 2290 1820 1510 2125 1705 2340 1910 1660 2215 1825 2420 2030 1390 2090 1615 2315 1850 1540 2150 1735 2365 1940 1690 2240 1855 2445 2060 mv v outpp output amplitude voltage (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols = float) (ols = v cc ? 1.2 v) **(ols = v ee ) 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 mv v ih input high voltage (single ? ended) (note 18) d, d v ee + 1275 v cc ? 1000* v cc v ee + 1275 v cc ? 1000* v cc v ee + 1275 v cc ? 1000* v cc mv v il input low voltage (single ? ended) (note 19) d, d v ih ? 2600 v cc ? 1400* v ih ? 150 v ih ? 2600 v cc ? 1400* v ih ? 150 v ih ? 2600 v cc ? 1400* v ih ? 150 mv v ihcmr input high voltage common mode range (differential configuration) (note 17) 1.2 3.3 1.2 3.3 1.2 3.3 v r tin internal input termination resistor 45 50 55 45 50 55 45 50 55  i ih input high current (@v ih ) d, d sel 30 5 100 50 30 5 100 50 30 5 100 50  a i il input low current (@v il ) d, d sel 20 5 100 50 20 5 100 50 20 5 100 50  a note: gigacomm circuits are designed to meet the dc specifications shown in the above table after thermal equilibrium has been established. the circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintaine d. 15. input and output parameters vary 1:1 with v cc . v ee can vary +0.925 v to ? 0.165 v. 16. all loading with 50  to v cc ? 2.0 v. 17. v ihcmr min varies 1:1 with v ee , v ihcmr max varies 1:1 with v cc . the v ihcmr range is referenced to the most positive side of the dif ferential input signal. 18. v ih cannot exceed v cc . 19. v il always  v ee . *typicals used for testing purposes. **when an output level of 400 mv is desired and v cc ? v ee > 3.0 v, a 2 k  resistor should be connected from ols to v ee . ***the device packaged in fcbga ? 16 have maximum ambient temperature specification of 70 c and devices packaged in qfn ? 16 have maximum ambient temperature specification of 85 c.
nbsg86a http://onsemi.com 8 table 12. dc characteristics, necl input with necl output v cc = 0 v; v ee = ? 3.465 v to ? 2.375 v (note 20) symbol characteristic ? 40 c 25 c 70 c(bga)/85 c(qfn)*** unit min typ max min typ max min typ max i ee negative power supply current 23 30 39 23 30 39 23 30 39 ma v oh output high voltage (note 21) ? 1040 ? 990 ? 940 ? 1010 ? 960 ? 910 ? 985 ? 935 ? 885 mv v ol output low voltage (note 21) ? 3.465 v  v ee  ? 3.0 v (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols =float) (ols = v cc ? 1.2 v) **(ols = v ee ) ? 3.0 v < v ee  ? 2.375 v (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols =float) (ols = v cc ? 1.2 v) (ols = v ee ) ? 1980 ? 1270 ? 1750 ? 1040 ? 1515 ? 1945 ? 1265 ? 1725 ? 1045 ? 1495 ? 1830 ? 1210 ? 1630 ? 990 ? 1425 ? 1795 ? 1205 ? 1605 ? 995 ? 1405 ? 1680 ? 1120 ? 1510 ? 910 ? 1305 ? 1645 ? 111 5 ? 1485 ? 915 ? 1285 ? 1940 ? 1235 ? 1715 ? 1010 ? 1480 ? 1905 ? 1230 ? 1690 ? 1010 ? 1460 ? 1790 ? 1175 ? 1595 ? 960 ? 1390 ? 1755 ? 1170 ? 1570 ? 960 ? 1370 ? 1640 ? 1085 ? 1475 ? 880 ? 1270 ? 1605 ? 1080 ? 1450 ? 880 ? 1250 ? 1910 ? 1210 ? 1685 ? 985 ? 1450 ? 1875 ? 1205 ? 1660 ? 990 ? 1435 ? 1760 ? 1150 ? 1565 ? 935 ? 1360 ? 1725 ? 1145 ? 1540 ? 940 ? 1345 ? 1610 ? 1060 ? 1445 ? 855 ? 1240 ? 1575 ? 1055 ? 1420 ? 860 ? 1225 mv v outpp output voltage amplitude ? 3.465 v  v ee  ? 3.0 v (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols = float) (ols = v cc ? 1.2 v) **(ols = v ee ) ? 3.0 v < v ee  ? 2.375 v (ols = v cc ) (ols = v cc ? 0.4 v) (ols = v cc ? 0.8 v, ols =float) (ols = v cc ? 1.2 v) (ols = v ee ) 705 130 535 0 345 670 125 510 0 325 815 220 640 0 435 800 215 615 5 415 695 125 530 0 340 660 120 505 0 320 805 215 635 0 430 795 210 610 0 410 690 125 525 0 335 655 120 500 0 320 800 215 630 0 425 790 210 605 5 410 mv v ih input high voltage (single ? ended) (note 23) d, d v ee + 1275 v cc ? 1000* v cc v ee + 1275 v cc ? 1000* v cc v ee + 1275 v cc ? 1000* v cc mv v il input low voltage (single ? ended) (note 24) d, d v ih ? 2600 v cc ? 1400* v ih ? 150 v ih ? 2600 v cc ? 1400* v ih ? 150 v ih ? 2600 v cc ? 1400* v ih ? 150 mv v ihcmr input high voltage common mode range (differential configuration) (note 22) v ee +1.2 0.0 v ee +1.2 0.0 v ee +1.2 0.0 v r tin internal input termination resistor 45 50 55 45 50 55 45 50 55  i ih input high current (@v ih ) d, d sel 30 5 100 50 30 5 100 50 30 5 100 50  a i il input low current (@v il ) d, d sel 20 5 100 50 20 5 100 50 20 5 100 50  a note: gigacomm circuits are designed to meet the dc specifications shown in the above table after thermal equilibrium has been established. the circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained . 20. input and output parameters vary 1:1 with v cc . 21. all loading with 50  to v cc ? 2.0 v. 22. v ihcmr min varies 1:1 with v ee , v ihcmr max varies 1:1 with v cc . the v ihcmr range is referenced to the most positive side of the dif ferential input signal. 23. v ih cannot exceed v cc . 24. v il always  v ee . *typicals used for testing purposes. **when an output level of 400 mv is desired and v cc ? v ee > 3.0 v, a 2 k  resistor should be connected from ols to v ee . ***the device packaged in fcbga ? 16 have maximum ambient temperature specification of 70 c and devices packaged in qfn ? 16 have maximum ambient temperature specification of 85 c.
nbsg86a http://onsemi.com 9 table 13. ac characteristics for fcbga ? 16 v cc = 0 v; v ee = ? 3.465 v to ? 2.375 v or v cc = 2.375 v to 3.465 v; v ee = 0 v symbol characteristic ? 40 c 25 c 70 c unit min typ max min typ max min typ max f max maximum frequency (see figure 8) (note 25) 7 8 7 8 7 8 ghz v outpp output voltage amplitude (ols = v cc )f in  7 ghz 550 740 500 720 450 700 mv t plh , t phl propagation delay to output differential d/sel q 110 160 210 115 165 215 120 170 220 ps t skew duty cycle skew (note 26) 5 15 5 15 5 15 ps t skew channel skew q d/sel 5 20 5 20 5 20 ps t jitter rms random clock jitter (see figure 8) (note 25) f in  7 ghz peak ? to ? peak data dependent jitter f in  7 gb/s 0.5 12 1.5 0.5 12 1.5 0.5 12 1.5 ps v inpp input voltage swing/sensitivity (differential configuration) (note 27) 75 2600 75 2600 75 2600 mv t r t f output rise/fall times (20% ? 80%) (q, q ) @ 1 ghz 20 40 65 20 40 65 20 40 65 ps 25. measured using a 500 mv source, 50% duty cycle clock source. all loading with 50  to v cc ? 2.0 v. input edge rates 40 ps (20% ? 80%). 26. t skew = |t plh ? t phl | for a nominal 50% differential clock input waveform. see figure 12. 27. v inpp (max) cannot exceed v cc ? v ee . table 14. ac characteristics for qfn ? 16 v cc = 0 v; v ee = ? 3.465 v to ? 2.375 v or v cc = 2.375 v to 3.465 v; v ee = 0 v symbol characteristic ? 40 c 25 c 85 c unit min typ max min typ max min typ max f max maximum frequency (see figure 8) (note 28) 7 8 7 8 7 8 ghz v outpp output voltage amplitude f in  7 ghz (ols = v cc )f in = 8 ghz 590 270 730 440 470 230 720 420 540 180 700 390 mv mv t plh , t phl propagation delay to output differential d/sel q 110 160 210 115 165 215 120 170 220 ps t skew duty cycle skew (note 29) 5 15 5 15 5 15 ps t skew channel skew q d/sel 5 20 5 20 5 20 ps t jitter rms random clock jitter (see figure 8) (note 31) f in  7 ghz peak ? to ? peak data dependent jitter (note 32) f in  7 gb/s 0.5 12 1.5 0.5 12 1.5 0.5 12 1.5 ps v inpp input voltage swing/sensitivity (differential configuration) (note 30) 75 2600 75 2600 75 2600 mv t r t f output rise/fall times (20% ? 80%) (q, q ) t r @ 1 ghz t f 30 17 45 35 60 65 30 17 45 35 60 65 30 17 45 35 60 65 ps 28. measured using a 500 mv source, 50% duty cycle clock source. all loading with 50  to v cc ? 2.0 v. input edge rates 40 ps (20% ? 80%). 29. t skew = |t plh ? t phl | for a nominal 50% differential clock input waveform. see figure 12. 30. v inpp (max) cannot exceed v cc ? v ee . 31. additive rms jitter with 50% duty cycle clock signal at 7 ghz. 32. additive peak ? to ? peak data dependent jitter with nrz prbs 2 31 ? 1 data rate at 7 gb/s.
nbsg86a http://onsemi.com 10 rms jitter input frequency (ghz) output voltage amplitude (mv) jitter out ps (rms) 0 100 200 300 400 500 600 700 800 900 12345678910 0 1 2 3 4 5 6 7 8 9 ols = v cc 0 ols = v cc ? 0.4 v *ols = v ee ols = v cc ? 0.8 v ols = float rms jitter input frequency (ghz) output voltage amplitude (mv) jitter out ps (rms) 0 100 200 300 400 500 600 700 800 900 12345678910 0 1 2 3 4 5 6 7 8 9 ols = v cc 0 ols = v cc ? 0.4 v *ols = v ee ols = v cc ? 0.8 v, ols = float figure 8. output voltage amplitude (v outpp ) / rms jitter vs. input frequency (f in ) for 2:1 mux mode (v cc ? v ee = 2.5 v @ 25 c; repetitive 1010 input data pattern) figure 9. output voltage amplitude (v outpp ) / rms jitter vs. input frequency (f in ) for 2:1 mux mode (v cc ? v ee = 3.3 v @ 25 c; repetitive 1010 input data pattern) *when an output level of 400 mv is desired and v cc ? v ee > 3.0 v, a 2 k  resistor should be connected from ols to v ee .
nbsg86a http://onsemi.com 11 i ols (  a) ? 700 ? 600 ? 500 ? 400 ? 300 ? 200 ? 100 0 100 200 300 figure 10. typical ols input current vs. ols input voltage (v cc ? v ee = 3.3 v @ 25 c) v ols (mv) v outpp (mv) 0 200 400 600 800 1000 ols (mv) figure 11. ols operating area v ee v cc v cc ? 400 v cc ? 800 v cc ? 1200 v ee v cc v cc ? 400 v cc ? 800 v cc ? 1200 v cc ? 75 v cc ? 250 v cc ? 550 v cc ? 700 v cc ? 900 v cc ? 1125 v cc ? 1275 v ee + 100
nbsg86a http://onsemi.com 12 figure 12. ac reference measurement d d q q t phl t plh v inpp (d) = v ih (d) ? v il (d) v outpp (q) = v oh (q) ? v ol (q) v inpp (d ) = v ih (d ) ? v il (d ) v outpp (q ) = v oh (q ) ? v ol (q ) figure 13. typical termination for output driver and device evaluation (see application note and8020/d ? termination of ecl logic devices.) driver device receiver device qd q d z o = 50  z o = 50  50  50  v tt v tt = v cc ? 2.0 v ordering information device package type shipping ? NBSG86ABAHTBG fcbga ? 16 (pb ? free) 100 / tape & reel nbsg86aba 4x4 mm fcbga ? 16 100 units / tray (contact sales representative) nbsg86abar2 4x4 mm fcbga ? 16 100 / tape & reel (contact sales representative) nbsg86amn 3x3 mm qfn ? 16 123 units / rail nbsg86amng 3x3 mm qfn ? 16 (pb ? free) 123 units / rail nbsg86amnr2g 3x3 mm qfn ? 16 (pb ? free) 3000 / tape & reel nbsg86amnhtbg qfn ? 16 (pb ? free) 100 / tape & reel board description nbsg86abaevb nbsg86aba evaluation board ?for information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging spe- cifications brochure, brd8011/d.
nbsg86a http://onsemi.com 13 package dimensions fcbga ? 16 ba suffix plastic 4 x 4 (mm) bga flip chip package case 489 ? 01 issue o 0.20 laser mark for pin 1 identification in this area d e m a1 a2 a 0.10 z 0.15 z rotated 90 clockwise detail k  5 view m ? m e 3 x s m x 0.15 y z 0.08 z 3 b 16 x feducial for pin a1 identification in this area 4321 a b c d 4 16 x notes: 1. dimensions are in millimeters. 2. interpret dimensions and tolerances per asme y14.5m, 1994. 3. dimension b is measured at the maximum solder ball diameter, parallel to datum plane z. 4. datum z (seating plane) is defined by the spherical crowns of the solder balls. 5. parallelism measurement shall exclude any effect of mark on top surface of package. dim min max millimeters a 1.40 max a1 0.25 0.35 a2 1.20 ref b 0.30 0.50 d 4.00 bsc e 4.00 bsc e 1.00 bsc s 0.50 bsc k ? x ? ? y ? m m ? z ?
nbsg86a http://onsemi.com 14 package dimensions 16 pin qfn case 485g ? 01 issue c 16x seating plane l d e 0.15 c a a1 e d2 e2 b 1 4 58 12 9 16 13 notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. dimension b applies to plated terminal and is measured between 0.25 and 0.30 mm from terminal. 4. coplanarity applies to the exposed pad as well as the terminals. 5. l max condition can not violate 0.2 mm minimum spacing between lead tip and flag ?? ?? ?? b a 0.15 c top view side view bottom view pin 1 location 0.10 c 0.08 c (a3) c 16 x e 16x note 5 0.10 c 0.05 c a b note 3 k 16x dim min max millimeters a 0.80 1.00 a1 0.00 0.05 a3 0.20 ref b 0.18 0.30 d 3.00 bsc d2 1.65 1.85 e 3.00 bsc e2 1.65 1.85 e 0.50 bsc k l 0.30 0.50 exposed pad 0.18 typ  mm inches  scale 10:1 0.50 0.02 0.575 0.022 1.50 0.059 3.25 0.128 0.30 0.012 3.25 0.128 0.30 0.012 exposed pad *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint* on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. ?typical? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, af filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. publication ordering information n. american technical support : 800 ? 282 ? 9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81 ? 3 ? 5773 ? 3850 nbsg86a/d gigacomm is a trademark of semiconductor components industries, llc. literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 303 ? 675 ? 2175 or 800 ? 344 ? 3860 toll free usa/canada fax : 303 ? 675 ? 2176 or 800 ? 344 ? 3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of NBSG86ABAHTBG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X